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Supplementary 1. Details of the CDNN and its real-valued counterparts 

1.1 Training of the source model 

The source model is constructed by using the open-source framework Pytorch. The neural 

network has 11 hidden layers, [50, 500, 500, 500, 500, 500, 500, 500, 500, 500, 200] neurons 

for each layer in sequence and complex Rectified Linear Unit (ℂReLU   as the nonlinear 

activation function. We randomly initialize the real and imaginary parts of weights and biases 

with a normal distribution and train the network from scratch. The Adam optimizer with a mini-

batch size of 512 and a learning rate of 1×10-5 is used.  

It should be clarified that the choices of hyperparameters have a great influence on the 

learning curves. And the hyperparameter configuration is practicable as long as it leads to a 

stable convergence of the training process and a low value of the testing loss. The above-

mentioned configuration is adopted in this work based on training results. 

1.2 Complex building blocks 

All the building blocks, functions and techniques are based on complex-valued representations 

and operations here. 

1. Complex activation function called ℂReLU. 

We use the ℂReLU as the non-linear activation function because it satisfies the Cauchy-

Riemann equations when both the real and imaginary parts are at the same time either strictly 

positive or strictly negative: 

ℂReLU(𝑧) = ReLU(Re(𝑧)) + 𝑖ReLU(Im(𝑧)),                 (S1  

where 𝑧 is a complex variable, 𝑧 = 𝑥 + 𝑖𝑦, 𝑥, 𝑦 ∈ ℝ. 

Another applicable non-linear activation function is given by the following equation: 

ℂPolarReLU(𝑧) = ReLU(Re(𝑧)) ∙ exp(𝑖ReLU(arg(𝑧))),           (S2  

where arg(𝑧) = arctan (
𝑦

𝑥
) , ∈ (−𝜋,𝜋].  

Both of them can be good candidates for the nonlinear activation function of CDNN 

because they have the ability to discriminate the complex information in different quadrants. In 

our work we use ℂReLU  for more direct operation on the real and imaginary parts of the 

complex numbers. 

2. Backpropagation of the CDNN. 

 The objective and activation functions are differentiable with respect to the real and 

imaginary parts of each complex parameter in the network, which enables the backpropagation 

in the CDNN. Loss functions are usually real numbers, then the chain rule for complex variables 

functions is as follows: 

     𝛻𝐿(𝑡) =
𝜕𝐿

𝜕𝑡
=

𝜕𝐿

𝜕𝑟
+ 𝑖

𝜕𝐿

𝜕𝑠
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𝜕𝑥

𝜕𝑥

𝜕𝑟
+

𝜕𝐿

𝜕𝑦

𝜕𝑦

𝜕𝑟
+ 𝑖 (

𝜕𝐿

𝜕𝑥

𝜕𝑥

𝜕𝑠
+

𝜕𝐿

𝜕𝑦

𝜕𝑦

𝜕𝑠
)                                                       

=
𝜕𝐿

𝜕𝑥
(

𝜕𝑥

𝜕𝑟
+ 𝑖

𝜕𝑥

𝜕𝑠
) +

𝜕𝐿

𝜕𝑦
(

𝜕𝑦

𝜕𝑟
+ 𝑖

𝜕𝑦

𝜕𝑠
)                                                        

=
𝜕𝐿

𝜕 Re(𝑧)
(

𝜕 Re(𝑧)

𝜕 Re(𝑡)
+ 𝑖

𝜕 Re(𝑧)

𝜕 Im(𝑡)
) +

𝜕𝐿

𝜕 Im(𝑧)
(

𝜕 Im(𝑧)

𝜕 Re(𝑡)
+ 𝑖

𝜕 Im(𝑧)

𝜕 Im(𝑡)
)                                   

= Re(𝛻𝐿(𝑧)) (
𝜕 Re(𝑧)

𝜕 Re(𝑡)
+ 𝑖

𝜕 Re(𝑧)

𝜕 Im(𝑡)
) + Im(𝛻𝐿(𝑧)) (

𝜕 Im(𝑧)

𝜕 Re(t)
+ 𝑖

𝜕 Im(𝑧)

𝜕 Im(𝑡)
)                      (S3  

where L is the loss function, t is another complex variables, 𝑡 = 𝑟 + 𝑖𝑠, 𝑟, 𝑡 ∈ ℝ, and 𝑧 = 𝑓(𝑡). 

1.3 Prediction results of CDNN 

Several test samples in the source dataset are randomly presented here in Figure S1. 

 

Figure S1. Examples demonstrating the CDNN performance. 
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1.4 Detailed information for the real-valued deep neural networks 

In order to prove the superiority of the CDNN, we trained the real part and the imaginary part 

of the transmission coefficients as the control groups, respectively. The real deep neural network 

(RDNN  and the imaginary deep neural network (IDNN  have the same architecture and dataset 

as the CDNN, whereas all the building blocks, functions and parameters are based on real-

valued operations and representations. Specifically, the forward predicting MSEs are as follows:  

𝑀𝑆𝐸(real) =
1

𝑚
∑ [(Re( 𝑻̂̃) − Re( 𝑻̃))

2

]𝑚
𝑖=1 ,                    (S4  

𝑀𝑆𝐸(imag) =
1

𝑚
∑ [(Im( 𝑻̂̃) − Im( 𝑻̃))

2

]𝑚
𝑖=1 ,                   (S5  

As a result, the overall test errors are both ~7.5×10-5 after 50000 epochs as shown in Figure 

S2. And several test samples in the source dataset are randomly presented here. Obviously, 

according to the geometric interpretation provided by the complex plane for complex numbers, 

i.e.  |𝑧|2 = 𝑥2 + 𝑦2 , when 𝑀𝑆𝐸(real) + 𝑀𝑆𝐸(𝑖𝑚𝑎𝑔) = 𝑀𝑆𝐸  in eq 1, the CDNN is 

competitive in performance with their real-valued counterparts. And if 𝑀𝑆𝐸 < 𝑀𝑆𝐸(real) +

𝑀𝑆𝐸(𝑖𝑚𝑎𝑔), we can say that the CDNN has the superior performance compared with their 

real-valued counterparts. 

 

 

Figure S2. Learning curves of the two real-valued deep neural networks together as the control group of the CDNN. 

(a) and (b) are RDNN and IDNN that both take the loss value as the function of epoch. The smoothed train losses (blue 

curves) and test losses (red curves) are shown upon the original learning curves (light gray). 

 

Supplementary 2. Training of the transfer model 

The transfer model has the same construction as the source model but some different 

hyperparameters of a mini-batch size of 128 and a learning rate of 5×10-6. Also, to alleviate the 

overfitting effect, L2 regularization is adopted for weight parameters (bias parameters are not 
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included  and the weight decay rate is set as 5×10-5. 

It should be clarified that the reason why the numbers of lines in three strategies are 

different in Fig. 4a is that some cases coincide with each other: 1  k = 0 in “frozen-none” and k 

= 0 in “hybrid-transfer” (i.e. direct learning ; 2  k = 10 in “frozen-none” and k = 0 in “copy-all”; 

3  k = 10 in “copy-all” and k = 10 in “hybrid-transfer”, respectively. The same cases are only 

draw once. 

Supplementary 3. Details of the CAPSO-based hybrid inverse model 

Particle swarm optimization (PSO  is a kind of evolutionary algorithm, designed by imitating 

the social foraging behavior of birds. And CAPSO is short for the conditioned adaptive PSO, 

adding the constraints and adaptive inertia weights which will be discussed as follows. The 

optimization starts from the random population within the search area. They look for the optimal 

solution by acting both independently and collaboratively. The fitness is used to evaluate the 

quality of the solution and guide each individual particle to update the position by adjusting its 

velocity through iterations. And the best personal position (pbest  and the best global position 

(gbest  update constantly until the end criterion is reached.  

 

Figure S3. Flowchart of the conditioned adaptive particle swarm optimization (CAPSO) algorithm. 

 

In our CAPSO, each particle is a four-dimensional tensor 𝒙𝑖 = [𝜀𝑖, 𝑔𝑖 , ℎ𝑖 , 𝑟𝑖], 1 ≤ 𝑖 ≤ 𝑁, 

where i is an integer, and 𝑁 = 200  is the total number of particles in the population. 

Considering that the meta-atoms used to form a metasurface generally have a fixed lattice size, 

a restriction is added to the initialization of the population: 2𝑟 + 𝑔 = 𝑃 ,where 𝑃 = 150 𝜇𝑚 

is the period of the target metalens. Also, to alleviate the coupling among adjacent unit cells, we 

set another constraint as 𝑔 > ℎ/10. The velocity tensor has the same dimension as the position 
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tensor 𝒙𝑖 used to update 𝒙𝑖 ,which is 𝒗𝑖 = [𝑣𝑖1 , 𝑣𝑖2, 𝑣𝑖3, 𝑣𝑖4], and each element is in the range 

of [−𝑣𝑚𝑎𝑥 , 𝑣𝑚𝑎𝑥]. The population is then input into the trained target-CDNN, which takes the 

place of CST software to calculate current EM coefficients. Then the fitness value is determined 

by the fitness function, which is defined as the loss as shown in Eq 2 based on the target EM 

coefficients, to evaluate the quality of particles. The particle with the best position is the meta-

atom with the dimension that has the most similar EM responses as the target. At this time, it is 

judged whether the end criterion is satisfied, that is, whether the maximum number of iterations 

is reached in our PSO algorithm. If yes, jump out of the loop and output the optimal parameter 

and the corresponding fitness value; if not, proceed to the next iteration, in which 𝒗𝑖 and 𝒙𝑖 of 

the particles are updated according to the following equations: 

𝑣𝑖𝑗
𝑘+1 = 𝑤𝑣𝑖𝑗

𝑘 + 𝑐1𝑟𝑎𝑛𝑑1(𝑝𝑏𝑒𝑠𝑡𝑖𝑗
𝑘 − 𝑥𝑖𝑗

𝑘 ) + 𝑐2𝑟𝑎𝑛𝑑2(𝑔𝑏𝑒𝑠𝑡𝑖𝑗
𝑘 − 𝑥𝑖𝑗

𝑘 ),        (S6  

𝑥𝑖𝑗
𝑘+1 = 𝑥𝑖𝑗

𝑘 + 𝑣𝑖𝑗
𝑘+1,                              (S7  

where 𝑤  is the inertia weight, 𝑐1 = 1.5  and 𝑐2 = 2.5  are cognitive and social rates, 

respectively. 𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 are used to generate random numbers uniformly distributed 

between 0 and 1. 𝑘 is the current iteration round. Eq S6 and S7 indicate that the velocity is 

actually the distance and direction that the particle will move in the next iteration. Eq S6 

includes three items:  

1  inertia part. It is composed of the inertia weight and the particle’s own velocity, which 

indicates that the next movement of the particle depends on its previous motion state. The non-

linear dynamic inertia weight coefficient formula is used here to adaptively balance the global 

search and local improvement ability of the PSO algorithm as follows: 

𝑤𝑖
𝑘+1 = 𝑤𝑚𝑖𝑛 + (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)

𝑓𝑖
𝑘−𝑓𝑚𝑖𝑛

𝑘

𝑓𝑎𝑣𝑔
𝑘 −𝑓𝑚𝑖𝑛

𝑘 ,                     (S8  

where 𝑤𝑚𝑎𝑥 = 0.   and 𝑤𝑚𝑖𝑛 = 0.4  are the maximum and minimum of 𝑤 , 𝑓  is the current 

fitness value of the particle, 𝑓𝑚𝑖𝑛 and 𝑓𝑎𝑣𝑔 are the mean and minimum fitness value of all the 

particles, respectively.  

2  Cognitive part. It represents the thinking of the particle itself, that is, the part of the 

particle's own experience, which can be understood as the distance and direction between the 

particle's current position and its own historical optimal position. 

3  Social part. It represents the information sharing and cooperation between particles, 

which is derived from the experience of other qualified particles in the swarm and can be 

understood as the distance and direction between the current position of the particle and the 

historical best position of the swarm. 

In our CAPSO, we assigned 𝑐2 > 𝑐1 , which indicates that particles are more likely to 

move toward the best location of the swarm. 

For each particle, its current fitness value is compared with the best position it had ever 

experienced. If the current is smaller, it will be taken as the best personal position. All the current 

values of pbest and gbest are compared, and gbest is updated.  
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Figure S4. Convergence trajectories of CAPSO for six selected meta-atoms. 

 

Supplementary 4. Detailed information for the designed metalens 

Table S1 lists the details of the optimal 41 meta-atoms from the edge to the center of the 

metalens at each location derived by the inverse model, which are utilized to achieve a terahertz 

metalens working at 0. 5 THz with a designed focal length of 20 mm. 

Num

ber 

permittivity 

𝝐 

radius 

𝒓 

height 

𝒉 

gap 

𝒈 

phase 

(π rad  

amplitu

de(a.u.  

fitness 

value 

40 14.8 58 73.4154 62.3 73 38.2 23 -0.4226 0.5025 0.000 56 

3  12.3 5  42.1214 57.5118 53. 3 3 -0.6 26 0.4 75 0.00077  

38 15.7753 27. 887 82.8054 61.0056 -0. 554 0.5005 0.0008 1 

37 17.603  27.5766 82.554  61.2117 0.7866 0.5002 0.00006  

36 14.4675 44.523  5 .7618 52.7381 0.5360 0.5005 0.000317 

35 16.8846 50.8084 62.7127 4 .5 58 0.2 14 0.5001 0.000045 

34 15.3000 74.3422 88.0551 37.828  0.0524 0.5025 0.001802 

33 15.  80 63.448  76.4050 43.2755 -0.1781 0.4  8 0.000076 

32 17.0048 24.5140 38. 071 62.7430 -0.402  0.5000 0.000163 

31 13.8215 28.5336 43.88 4 60.7332 -0.6214 0.4 83 0.000634 

30 13.8738 41.7405 51. 25  54.12 8 -0.8332 0.4    0.000135 

2  15.16 7 2 .6376 87.813  60.1812 0. 615 0.4 81 0.000620 

28 15.1000 41.1182 50.4460 54.440  0.7632 0.4824 0.005612 

27 14.15   43.5752 5 .5675 53.2124 0.5708 0.5000 0.000156 

26 15.7340 52.8102 83.3 44 48.5 4  0.3857 0.5000 0.000112 
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25 16.7 08 67.6577 63.0376 41.1712 0.2073 0.4 6  0.000 36 

24 16.3 48 62.8581 65.02 1 43.5710 0.0356 0.4 8  0.000326 

23 18.8266 6 .2454 73.7300 40.3773 -0.1287 0.4 85 0.000 75 

22 15.0330 82.8158 7 .2444 33.5 21 -0.2874 0.5000 0.000073 

21 12.8 82 70.3403 74.4250 3 .82 8 -0.4382 0.5006 0.000578 

20 11.4534 52.6684 67.1337 48.6658 -0.5830 0.5001 0.00014  

1  11.4428 37.4814 60.81 3 56.25 3 -0.7204 0.4  8 0.000110 

18 16.6226 27.2567 77.3806 61.3716 -0.8511 0.4  3 0.000344 

17 13.371  35. 04  53.1872 57.0476 -0. 746 0.4  2 0.000237 

16 16.4804 2 .05 7 84.621  60.4701 0. 087 0.50 3 0.002807 

15 18.0515 26.3 55 80.6526 61.8023 0.7  0 0.4 83 0.000544 

14 16.127  42.6820 48.26 2 53.65 0 0.6 63 0.4 88 0.000358 

13 18.3060 46.5453 44.4834 51.7274 0.6007 0.5018 0.000547 

12 13.36 5 37.0506 62.0445 56.4747 0.5120 0.5013 0.000467 

11 15.8661 53. 055 88.5541 48.0473 0.4304 0.5003 0.000123 

10 14. 480 32.8033 50.8088 58.5 83 0.3556 0.5011 0.000480 

  17.3103 35.47 7  0.8764 57.2602 0.2883 0.5000 0.000087 

8 18.004  57.1266 70.6637 46.4367 0.2277 0.4 88 0.00043  

7 16. 420 70.4 2  65.5674 3 .7535 0.1745 0.5007 0.00024  

6 16.0321 71.64 1 72.6703 3 .1754 0.12 0 0.4 77 0.001462 

5 15.8621 64. 650 67.6018 42.5175 0.08 0 0.4  8 0.000058 

4 16.3302 62.7078 64.72 2 43.6461 0.0568 0.4 71 0.001043 

3 15.1655 62.4863 71.2675 43.7568 0.0321 0.5010 0.000324 

2 16. 134 47.7333 75.7231 51.1334 0.0142 0.5015 0.000445 

1 14.8374 71.7000 8 .3223 3 .1500 0.0035 0.4  6 0.000123 

0 14.4581 65.3860 80.7 76 42.3070 0.0001 0.5005 0.000246 

Table S1. Geometrical parameters and corresponding electromagnetic responses and fitness values of the optimal meta-

atoms used to build the proposed metalens. 

 

Supplementary 5. Effect of amplitude weight factor on the performance 

of the metalens 

To verify the effect of the amplitude weight factor on the performance of the metasurface, we 

set different values of 𝜂 in eq 2 and conducted the inverse model on the source dataset with 

other conditions remaining the same. The metalens is designed to focus the incident light to 

𝑧 = 200 μm with a diameter of 162 μm and a lattice size of 2 μm. As shown in Figure S5, 

different amplitude weight factors lead to variations in the peak intensity of the focus and the 

shift of the focal length, where the case that amplitude is not considered corresponds to the 
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lowest peak intensity and the largest focal shift. The results indicate that the amplitude also 

plays a role in the phase-gradient metasurface, which further declares the significance of CDNN 

that can predict the complex transmission coefficients containing the comprehensive 

information of amplitude and phase. 

 

Figure S5. Characterization of the metalens designed by the hybrid inverse model in the source frequency band. (a) 

Normalized intensity profiles along the propagation direction at 𝑥 = 0. Different colors represent different values of 

the weight factor 𝜂 as the legend shows. (b) and (c) are normalized intensity distributions of the designed metalens 

along the propagation plane with 𝜂 = 0.3 and 𝜂 = 0, respectively.  

 


