
1

Supplementary for

Spectral Transfer-learning-based Metasurface Design

Assisted by Complex-valued Deep Neural Network

Yi Xu,1 Fu Li,1 Jianqiang Gu,1* Zhiwei Bi,2 Bing Cao,2* Quanlong Yang,3* Jiaguang Han,4

Qinghua Hu,2 and Weili Zhang5

1Tianjin University, Center for Terahertz Waves and College of Precision Instrument and

Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology,

Ministry of Education, 300072 Tianjin, People’s Republic of China.

2Tianjin University, College of Intelligence and Computing, 300072 Tianjin, People’s Republic

of China.

3Central South University, Hunan Key Laboratory of Nanophotonics and Devices, School of

Physics and Electronics, Changsha 410083, Hunan, China.

4Guilin University of Electronic Technology, Guangxi Key Laboratory of Optoelectronic

Information Processing, School of Optoelectronic Engineering, Guilin, 541004, China.

5Oklahoma State University, School of Electrical and Computer Engineering, Stillwater, OK

74078, United States.

*gjq@tju.edu.cn

Supplementary 1. Details of the CDNN and its real-valued counterparts

Supplementary 2. Training of the transfer model

Supplementary 3. Details of the CAPSO-based hybrid inverse model

Supplementary 4. Detailed information for the designed metalens

Supplementary 5. Effect of amplitude weight factor on the performance of the

metalens

2

Supplementary 1. Details of the CDNN and its real-valued counterparts

1.1 Training of the source model

The source model is constructed by using the open-source framework Pytorch. The neural

network has 11 hidden layers, [50, 500, 500, 500, 500, 500, 500, 500, 500, 500, 200] neurons

for each layer in sequence and complex Rectified Linear Unit (ℂReLU as the nonlinear

activation function. We randomly initialize the real and imaginary parts of weights and biases

with a normal distribution and train the network from scratch. The Adam optimizer with a mini-

batch size of 512 and a learning rate of 1×10-5 is used.

It should be clarified that the choices of hyperparameters have a great influence on the

learning curves. And the hyperparameter configuration is practicable as long as it leads to a

stable convergence of the training process and a low value of the testing loss. The above-

mentioned configuration is adopted in this work based on training results.

1.2 Complex building blocks

All the building blocks, functions and techniques are based on complex-valued representations

and operations here.

1. Complex activation function called ℂReLU.

We use the ℂReLU as the non-linear activation function because it satisfies the Cauchy-

Riemann equations when both the real and imaginary parts are at the same time either strictly

positive or strictly negative:

ℂReLU(𝑧) = ReLU(Re(𝑧)) + 𝑖ReLU(Im(𝑧)), (S1

where 𝑧 is a complex variable, 𝑧 = 𝑥 + 𝑖𝑦, 𝑥, 𝑦 ∈ ℝ.

Another applicable non-linear activation function is given by the following equation:

ℂPolarReLU(𝑧) = ReLU(Re(𝑧)) ∙ exp(𝑖ReLU(arg(𝑧))), (S2

where arg(𝑧) = arctan (
𝑦

𝑥
) , ∈ (−𝜋,𝜋].

Both of them can be good candidates for the nonlinear activation function of CDNN

because they have the ability to discriminate the complex information in different quadrants. In

our work we use ℂReLU for more direct operation on the real and imaginary parts of the

complex numbers.

2. Backpropagation of the CDNN.

 The objective and activation functions are differentiable with respect to the real and

imaginary parts of each complex parameter in the network, which enables the backpropagation

in the CDNN. Loss functions are usually real numbers, then the chain rule for complex variables

functions is as follows:

 𝛻𝐿(𝑡) =
𝜕𝐿

𝜕𝑡
=

𝜕𝐿

𝜕𝑟
+ 𝑖

𝜕𝐿

𝜕𝑠

3

=
𝜕𝐿

𝜕𝑥

𝜕𝑥

𝜕𝑟
+

𝜕𝐿

𝜕𝑦

𝜕𝑦

𝜕𝑟
+ 𝑖 (

𝜕𝐿

𝜕𝑥

𝜕𝑥

𝜕𝑠
+

𝜕𝐿

𝜕𝑦

𝜕𝑦

𝜕𝑠
)

=
𝜕𝐿

𝜕𝑥
(

𝜕𝑥

𝜕𝑟
+ 𝑖

𝜕𝑥

𝜕𝑠
) +

𝜕𝐿

𝜕𝑦
(

𝜕𝑦

𝜕𝑟
+ 𝑖

𝜕𝑦

𝜕𝑠
)

=
𝜕𝐿

𝜕 Re(𝑧)
(

𝜕 Re(𝑧)

𝜕 Re(𝑡)
+ 𝑖

𝜕 Re(𝑧)

𝜕 Im(𝑡)
) +

𝜕𝐿

𝜕 Im(𝑧)
(

𝜕 Im(𝑧)

𝜕 Re(𝑡)
+ 𝑖

𝜕 Im(𝑧)

𝜕 Im(𝑡)
)

= Re(𝛻𝐿(𝑧)) (
𝜕 Re(𝑧)

𝜕 Re(𝑡)
+ 𝑖

𝜕 Re(𝑧)

𝜕 Im(𝑡)
) + Im(𝛻𝐿(𝑧)) (

𝜕 Im(𝑧)

𝜕 Re(t)
+ 𝑖

𝜕 Im(𝑧)

𝜕 Im(𝑡)
) (S3

where L is the loss function, t is another complex variables, 𝑡 = 𝑟 + 𝑖𝑠, 𝑟, 𝑡 ∈ ℝ, and 𝑧 = 𝑓(𝑡).

1.3 Prediction results of CDNN

Several test samples in the source dataset are randomly presented here in Figure S1.

Figure S1. Examples demonstrating the CDNN performance.

4

1.4 Detailed information for the real-valued deep neural networks

In order to prove the superiority of the CDNN, we trained the real part and the imaginary part

of the transmission coefficients as the control groups, respectively. The real deep neural network

(RDNN and the imaginary deep neural network (IDNN have the same architecture and dataset

as the CDNN, whereas all the building blocks, functions and parameters are based on real-

valued operations and representations. Specifically, the forward predicting MSEs are as follows:

𝑀𝑆𝐸(real) =
1

𝑚
∑ [(Re(𝑻̂̃) − Re(𝑻̃))

2

]𝑚
𝑖=1 , (S4

𝑀𝑆𝐸(imag) =
1

𝑚
∑ [(Im(𝑻̂̃) − Im(𝑻̃))

2

]𝑚
𝑖=1 , (S5

As a result, the overall test errors are both ~7.5×10-5 after 50000 epochs as shown in Figure

S2. And several test samples in the source dataset are randomly presented here. Obviously,

according to the geometric interpretation provided by the complex plane for complex numbers,

i.e. |𝑧|2 = 𝑥2 + 𝑦2 , when 𝑀𝑆𝐸(real) + 𝑀𝑆𝐸(𝑖𝑚𝑎𝑔) = 𝑀𝑆𝐸 in eq 1, the CDNN is

competitive in performance with their real-valued counterparts. And if 𝑀𝑆𝐸 < 𝑀𝑆𝐸(real) +

𝑀𝑆𝐸(𝑖𝑚𝑎𝑔), we can say that the CDNN has the superior performance compared with their

real-valued counterparts.

Figure S2. Learning curves of the two real-valued deep neural networks together as the control group of the CDNN.

(a) and (b) are RDNN and IDNN that both take the loss value as the function of epoch. The smoothed train losses (blue

curves) and test losses (red curves) are shown upon the original learning curves (light gray).

Supplementary 2. Training of the transfer model

The transfer model has the same construction as the source model but some different

hyperparameters of a mini-batch size of 128 and a learning rate of 5×10-6. Also, to alleviate the

overfitting effect, L2 regularization is adopted for weight parameters (bias parameters are not

5

included and the weight decay rate is set as 5×10-5.

It should be clarified that the reason why the numbers of lines in three strategies are

different in Fig. 4a is that some cases coincide with each other: 1 k = 0 in “frozen-none” and k

= 0 in “hybrid-transfer” (i.e. direct learning ; 2 k = 10 in “frozen-none” and k = 0 in “copy-all”;

3 k = 10 in “copy-all” and k = 10 in “hybrid-transfer”, respectively. The same cases are only

draw once.

Supplementary 3. Details of the CAPSO-based hybrid inverse model

Particle swarm optimization (PSO is a kind of evolutionary algorithm, designed by imitating

the social foraging behavior of birds. And CAPSO is short for the conditioned adaptive PSO,

adding the constraints and adaptive inertia weights which will be discussed as follows. The

optimization starts from the random population within the search area. They look for the optimal

solution by acting both independently and collaboratively. The fitness is used to evaluate the

quality of the solution and guide each individual particle to update the position by adjusting its

velocity through iterations. And the best personal position (pbest and the best global position

(gbest update constantly until the end criterion is reached.

Figure S3. Flowchart of the conditioned adaptive particle swarm optimization (CAPSO) algorithm.

In our CAPSO, each particle is a four-dimensional tensor 𝒙𝑖 = [𝜀𝑖, 𝑔𝑖 , ℎ𝑖 , 𝑟𝑖], 1 ≤ 𝑖 ≤ 𝑁,

where i is an integer, and 𝑁 = 200 is the total number of particles in the population.

Considering that the meta-atoms used to form a metasurface generally have a fixed lattice size,

a restriction is added to the initialization of the population: 2𝑟 + 𝑔 = 𝑃 ,where 𝑃 = 150 𝜇𝑚

is the period of the target metalens. Also, to alleviate the coupling among adjacent unit cells, we

set another constraint as 𝑔 > ℎ/10. The velocity tensor has the same dimension as the position

6

tensor 𝒙𝑖 used to update 𝒙𝑖 ,which is 𝒗𝑖 = [𝑣𝑖1 , 𝑣𝑖2, 𝑣𝑖3, 𝑣𝑖4], and each element is in the range

of [−𝑣𝑚𝑎𝑥 , 𝑣𝑚𝑎𝑥]. The population is then input into the trained target-CDNN, which takes the

place of CST software to calculate current EM coefficients. Then the fitness value is determined

by the fitness function, which is defined as the loss as shown in Eq 2 based on the target EM

coefficients, to evaluate the quality of particles. The particle with the best position is the meta-

atom with the dimension that has the most similar EM responses as the target. At this time, it is

judged whether the end criterion is satisfied, that is, whether the maximum number of iterations

is reached in our PSO algorithm. If yes, jump out of the loop and output the optimal parameter

and the corresponding fitness value; if not, proceed to the next iteration, in which 𝒗𝑖 and 𝒙𝑖 of

the particles are updated according to the following equations:

𝑣𝑖𝑗
𝑘+1 = 𝑤𝑣𝑖𝑗

𝑘 + 𝑐1𝑟𝑎𝑛𝑑1(𝑝𝑏𝑒𝑠𝑡𝑖𝑗
𝑘 − 𝑥𝑖𝑗

𝑘) + 𝑐2𝑟𝑎𝑛𝑑2(𝑔𝑏𝑒𝑠𝑡𝑖𝑗
𝑘 − 𝑥𝑖𝑗

𝑘), (S6

𝑥𝑖𝑗
𝑘+1 = 𝑥𝑖𝑗

𝑘 + 𝑣𝑖𝑗
𝑘+1, (S7

where 𝑤 is the inertia weight, 𝑐1 = 1.5 and 𝑐2 = 2.5 are cognitive and social rates,

respectively. 𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 are used to generate random numbers uniformly distributed

between 0 and 1. 𝑘 is the current iteration round. Eq S6 and S7 indicate that the velocity is

actually the distance and direction that the particle will move in the next iteration. Eq S6

includes three items:

1 inertia part. It is composed of the inertia weight and the particle’s own velocity, which

indicates that the next movement of the particle depends on its previous motion state. The non-

linear dynamic inertia weight coefficient formula is used here to adaptively balance the global

search and local improvement ability of the PSO algorithm as follows:

𝑤𝑖
𝑘+1 = 𝑤𝑚𝑖𝑛 + (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)

𝑓𝑖
𝑘−𝑓𝑚𝑖𝑛

𝑘

𝑓𝑎𝑣𝑔
𝑘 −𝑓𝑚𝑖𝑛

𝑘 , (S8

where 𝑤𝑚𝑎𝑥 = 0. and 𝑤𝑚𝑖𝑛 = 0.4 are the maximum and minimum of 𝑤 , 𝑓 is the current

fitness value of the particle, 𝑓𝑚𝑖𝑛 and 𝑓𝑎𝑣𝑔 are the mean and minimum fitness value of all the

particles, respectively.

2 Cognitive part. It represents the thinking of the particle itself, that is, the part of the

particle's own experience, which can be understood as the distance and direction between the

particle's current position and its own historical optimal position.

3 Social part. It represents the information sharing and cooperation between particles,

which is derived from the experience of other qualified particles in the swarm and can be

understood as the distance and direction between the current position of the particle and the

historical best position of the swarm.

In our CAPSO, we assigned 𝑐2 > 𝑐1 , which indicates that particles are more likely to

move toward the best location of the swarm.

For each particle, its current fitness value is compared with the best position it had ever

experienced. If the current is smaller, it will be taken as the best personal position. All the current

values of pbest and gbest are compared, and gbest is updated.

7

Figure S4. Convergence trajectories of CAPSO for six selected meta-atoms.

Supplementary 4. Detailed information for the designed metalens

Table S1 lists the details of the optimal 41 meta-atoms from the edge to the center of the

metalens at each location derived by the inverse model, which are utilized to achieve a terahertz

metalens working at 0. 5 THz with a designed focal length of 20 mm.

Num

ber

permittivity

𝝐

radius

𝒓

height

𝒉

gap

𝒈

phase

(π rad

amplitu

de(a.u.

fitness

value

40 14.8 58 73.4154 62.3 73 38.2 23 -0.4226 0.5025 0.000 56

3 12.3 5 42.1214 57.5118 53. 3 3 -0.6 26 0.4 75 0.00077

38 15.7753 27. 887 82.8054 61.0056 -0. 554 0.5005 0.0008 1

37 17.603 27.5766 82.554 61.2117 0.7866 0.5002 0.00006

36 14.4675 44.523 5 .7618 52.7381 0.5360 0.5005 0.000317

35 16.8846 50.8084 62.7127 4 .5 58 0.2 14 0.5001 0.000045

34 15.3000 74.3422 88.0551 37.828 0.0524 0.5025 0.001802

33 15. 80 63.448 76.4050 43.2755 -0.1781 0.4 8 0.000076

32 17.0048 24.5140 38. 071 62.7430 -0.402 0.5000 0.000163

31 13.8215 28.5336 43.88 4 60.7332 -0.6214 0.4 83 0.000634

30 13.8738 41.7405 51. 25 54.12 8 -0.8332 0.4 0.000135

2 15.16 7 2 .6376 87.813 60.1812 0. 615 0.4 81 0.000620

28 15.1000 41.1182 50.4460 54.440 0.7632 0.4824 0.005612

27 14.15 43.5752 5 .5675 53.2124 0.5708 0.5000 0.000156

26 15.7340 52.8102 83.3 44 48.5 4 0.3857 0.5000 0.000112

8

25 16.7 08 67.6577 63.0376 41.1712 0.2073 0.4 6 0.000 36

24 16.3 48 62.8581 65.02 1 43.5710 0.0356 0.4 8 0.000326

23 18.8266 6 .2454 73.7300 40.3773 -0.1287 0.4 85 0.000 75

22 15.0330 82.8158 7 .2444 33.5 21 -0.2874 0.5000 0.000073

21 12.8 82 70.3403 74.4250 3 .82 8 -0.4382 0.5006 0.000578

20 11.4534 52.6684 67.1337 48.6658 -0.5830 0.5001 0.00014

1 11.4428 37.4814 60.81 3 56.25 3 -0.7204 0.4 8 0.000110

18 16.6226 27.2567 77.3806 61.3716 -0.8511 0.4 3 0.000344

17 13.371 35. 04 53.1872 57.0476 -0. 746 0.4 2 0.000237

16 16.4804 2 .05 7 84.621 60.4701 0. 087 0.50 3 0.002807

15 18.0515 26.3 55 80.6526 61.8023 0.7 0 0.4 83 0.000544

14 16.127 42.6820 48.26 2 53.65 0 0.6 63 0.4 88 0.000358

13 18.3060 46.5453 44.4834 51.7274 0.6007 0.5018 0.000547

12 13.36 5 37.0506 62.0445 56.4747 0.5120 0.5013 0.000467

11 15.8661 53. 055 88.5541 48.0473 0.4304 0.5003 0.000123

10 14. 480 32.8033 50.8088 58.5 83 0.3556 0.5011 0.000480

 17.3103 35.47 7 0.8764 57.2602 0.2883 0.5000 0.000087

8 18.004 57.1266 70.6637 46.4367 0.2277 0.4 88 0.00043

7 16. 420 70.4 2 65.5674 3 .7535 0.1745 0.5007 0.00024

6 16.0321 71.64 1 72.6703 3 .1754 0.12 0 0.4 77 0.001462

5 15.8621 64. 650 67.6018 42.5175 0.08 0 0.4 8 0.000058

4 16.3302 62.7078 64.72 2 43.6461 0.0568 0.4 71 0.001043

3 15.1655 62.4863 71.2675 43.7568 0.0321 0.5010 0.000324

2 16. 134 47.7333 75.7231 51.1334 0.0142 0.5015 0.000445

1 14.8374 71.7000 8 .3223 3 .1500 0.0035 0.4 6 0.000123

0 14.4581 65.3860 80.7 76 42.3070 0.0001 0.5005 0.000246

Table S1. Geometrical parameters and corresponding electromagnetic responses and fitness values of the optimal meta-

atoms used to build the proposed metalens.

Supplementary 5. Effect of amplitude weight factor on the performance

of the metalens

To verify the effect of the amplitude weight factor on the performance of the metasurface, we

set different values of 𝜂 in eq 2 and conducted the inverse model on the source dataset with

other conditions remaining the same. The metalens is designed to focus the incident light to

𝑧 = 200 μm with a diameter of 162 μm and a lattice size of 2 μm. As shown in Figure S5,

different amplitude weight factors lead to variations in the peak intensity of the focus and the

shift of the focal length, where the case that amplitude is not considered corresponds to the

9

lowest peak intensity and the largest focal shift. The results indicate that the amplitude also

plays a role in the phase-gradient metasurface, which further declares the significance of CDNN

that can predict the complex transmission coefficients containing the comprehensive

information of amplitude and phase.

Figure S5. Characterization of the metalens designed by the hybrid inverse model in the source frequency band. (a)

Normalized intensity profiles along the propagation direction at 𝑥 = 0. Different colors represent different values of

the weight factor 𝜂 as the legend shows. (b) and (c) are normalized intensity distributions of the designed metalens

along the propagation plane with 𝜂 = 0.3 and 𝜂 = 0, respectively.

